Disentanglement of two harmonic oscillators in relativistic motion
نویسندگان
چکیده
منابع مشابه
The One-dimensional Thermal Properties for the Relativistic Harmonic Oscillators
The relativistic harmonic oscillator is one of the most important quantum system, as it is one of the very few that can be solved exactly. The Dirac relativistic oscillator (DO) interaction is an important potential both for theory and application. It was for the first time studied by Ito et al [1]. They considered a Dirac equation in which the momentum p is replaced by p − imβω r, with r being...
متن کاملClassical and Quantum Chaotic Behaviors of Two Colliding Harmonic Oscillators
We have systematically studied both classical and quantum chaotic behaviors of two colliding harmonic oscillators. The classical case falls in KolmogorovArnold-Moser class. It is shown that there exists an energy threshold, above which the system becomes nonintegrable. For some values of the initial energy near the threshold, we have found that the ratio of frequencies of the two oscillators af...
متن کاملsynthesis of platinum nanostructures in two phase system
چکیده پلاتین، فلزی نجیب، پایدار و گران قیمت با خاصیت کاتالیزوری زیاد است که کاربرد های صنعتی فراوانی دارد. کمپلکس های پلاتین(ii) به عنوان دارو های ضد سرطان شناخته شدند و در شیمی درمانی بیماران سرطانی کاربرد دارند. خاصیت کاتالیزوری و عملکرد گزینشی پلاتین مستقیماً به اندازه و- شکل ماده ی پلاتینی بستگی دارد. بعضی از نانو ذرات فلزی در سطح مشترک مایع- مایع سنتز شده اند، اما نانو ساختار های پلاتین ب...
Nonpointlike Particles in Harmonic Oscillators
Quantum mechanics ordinarily describes particles as being pointlike, in the sense that the uncertainty ∆x can, in principle, be made arbitrarily small. It has been shown that suitable correction terms to the canonical commutation relations induce a finite lower bound to spatial localisation. Here, we perturbatively calculate the corrections to the energy levels of an in this sense nonpointlike ...
متن کاملCoupled oscillators, entangled oscillators, and Lorentz-covariant harmonic oscillators
Other than scattering problems where perturbation theory is applicable, there are basically two ways to solve problems in physics. One is to reduce the problem to harmonic oscillators, and the other is to formulate the problem in terms of two-by-two matrices. If two oscillators are coupled, the problem combines both two-by-two matrices and harmonic oscillators. This method then becomes a powerf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 2008
ISSN: 1550-7998,1550-2368
DOI: 10.1103/physrevd.78.125025